
Digital Object Identifier (DOI) 10.1007/s100529900097
Eur. Phys. J. C 10, 121–142 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

Non-perturbative renormalization of lattice four-fermion
operators without power subtractions
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Abstract. A general nonperturbative analysis of the renormalization properties of ∆I = 3/2 four-fermion
operators in the framework of lattice regularization with Wilson fermions is presented. We discuss the non-
perturbative determination of the operator renormalization constants in the lattice regularization indepen-
dent (RI or MOM) scheme. We also discuss the determination of the finite lattice subtraction coefficients
from Ward identities. We prove that, at large external virtualities, the determination of the lattice mixing
coefficients, obtained using the RI renormalization scheme, is equivalent to that based on Ward identities,
in the continuum and chiral limits. As a feasibility study of our method, we compute the mixing matrix
at several renormalization scales, for three values of the lattice coupling β, using the Wilson and tree-level
improved SW-Clover actions.

1 Introduction

The renormalization constants of lattice operators are nec-
essary ingredients in the prediction of physical amplitudes
from lattice matrix elements. Schematically, the physical
amplitude Aα→β associated to the transition α → β in-
duced by the composite operator O is given, in the for-
malism of the operator product expansion (OPE), by

Aα→β = CW(µ)ZO(aµ)〈α|O(a)|β〉 (1)

where CW is the Wilson coefficient, µ is the renormaliza-
tion scale, a is the lattice spacing, 〈α|O(a)|β〉 is the ma-
trix element of the bare lattice operator relevant to the
physical process and ZO its renormalization constant1.
The Wilson coefficient CW(µ) is calculated in perturba-
tion theory at the renormalization scale µ. It depends on
the renormalization scheme (a mass-independent scheme
is implied throughout this paper). Wilson coefficients are
known to next-to-leading order (NLO); see [1]–[5]. The
matrix element must be calculated nonperturbatively; the
only known method for computing it from first principles
(at a fixed cutoff a−1) is lattice QCD [6]. The operator
renormalization constant ZO is the link between the ma-
trix element, regularized on the lattice, and its renormal-
ized, continuum counterpart. So far, three methods have
been implemented to calculate it:

1 Here our notation is schematic; in general, we have a set
of operators, and ZO is a matrix which mixes those operators
that form a complete basis under renormalization.

1. Lattice perturbation theory (PT) [7]- [9].
2. Lattice Ward Identities (WI), in the spirit of [10,11],

either with hadronic states (see [12]–[17]), or with quark
states (see [14,15] and the more recent [18]), or even
with the Schrödinger functional (see [19]). The WI
method is nonperturbative.

3. The nonperturbative (NP) method of [20], which con-
sists in imposing renormalization conditions at quark
correlation functions with operator insertions, at a
given scale (see [20]–[24]).

Once the systematic errors of these calculations are under-
stood and kept under control, the matrix elements, com-
puted in simulations, can be properly renormalized and
reliable nonperturbative estimates of physical quantities
can be obtained.

The simplest case is that of the matrix elements of
two-fermion (dimension-three) operators, from which, for
example, the decay constants of light-vector and pseu-
doscalar mesons can be extracted. Several complications
are avoided due to the fact that the operators renormalize
multiplicatively. The situation is less straightforward in
the case of four-fermion (dimension-six) operators. Their
renormalization is also additive; mixing occurs with other
operators of the same dimension and, in some cases, also
with operators of lower dimensionality. These operators
must then be subtracted in order to make the original
operator finite. Mixing with lower-dimensional operators
(e.g., in the problem of understanding the ∆I = 1/2 rule)
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is characterized by several theoretical and technical sub-
tleties, which have been addressed in [25].

This paper consists in a study of the renormalization
properties of the complete basis of dimension-six four-
fermion operators in the absence of power subtractions
(i.e., operators mixing only with others of equal dimen-
sion), using nonperturbative methods. We will discuss be-
low several phenomenological applications of this prob-
lem, related to light- (strange-) flavour phenomenology.
We point out, however, that since we are dealing with a
mass-independent renormalization scheme, our results can
also be applied to heavy-flavour phenomenology (e.g., the
∆B = 2 process). This calculation is also of relevance to
the evaluation of the ∆I = 1/2 matrix elements, since the
anomalous dimension of the octet operators is unchanged
by the mixing with lower dimensional operators (and the
related power subtractions) [26]. The most common exam-
ples concernK-meson decays, which involve operator mix-
ing without power subtractions (note that SU(2)-isospin-
breaking effects are neglected):

– The study of K0–K̄0 oscillations involves the com-
putation of BK (the B parameter of the K meson),
which is obtained from the ∆S = 2 matrix element
〈K̄0|O∆S=2|K0〉 of the operator

O∆S=2 = (s̄γL
µd)(s̄γ

L
µd) (2)

where s and d stand for strange and down quarks.
Our conventions for Dirac and colour matrices, indices,
etc. are given in Appendix A.

– The study of the ∆I = 3/2 sector of the decay K →
ππ involves the computation of the matrix elements
〈ππ|O3/2

9,10|K〉 of the operators

O
3/2
9 = (s̄AγL

µd
A)(ūBγL

µu
B) + (s̄AγL

µu
A)(ūBγL

µd
B)

−(s̄AγL
µd

A)(d̄BγL
µd

B)

O
3/2
10 = (s̄AγL

µd
B)(ūBγL

µu
A) + (s̄AγL

µu
B)(ūBγL

µd
A)

−(s̄AγL
µd

B)(d̄BγL
µd

A) (3)

where u stands for the up quark andA,B denote colour
indices. The above operators transform as members of
the (27, 1) representation of the SU(3)L ⊗ SU(3)R chi-
ral group. Moreover, the study of the electropenguin
contribution to the decay K → ππ involves the com-
putation of the matrix element 〈ππ|O3/2

7,8 |K〉 of the op-
erators

O
3/2
7 = (s̄AγL

µd
A)(ūBγR

µ u
B) + (s̄AγL

µu
A)(ūBγR

µ d
B)

−(s̄AγL
µd

A)(d̄BγR
µ d

B)

O
3/2
8 = (s̄AγL

µd
B)(ūBγR

µ u
A) + (s̄AγL

µu
B)(ūBγR

µ d
A)

−(s̄AγL
µd

B)(d̄BγR
µ d

A) (4)

which are also ∆I = 3/2, but transform as an (8, 8)
representation of the chiral group. These K → ππ ma-
trix elements are essential to the calculation of ε′/ε.
They can be obtained, through soft pion theorems,

from the matrix elements 〈π+|O3/2
k |K+〉 (for k =

7, 8, 9, 10). From the single-state matrix elements, the
corresponding B parameters, B3/2

7,8 , can be extracted.
Note that in the limit of degenerate quark masses,
both operators O3/2

9,10, having a left–left Dirac struc-
ture, renormalize in the same way as the O∆S=2 op-
erator. Moreover, the matrix elements 〈π+|O3/2

9,10|K+〉
have the same B parameter as 〈K̄0|O∆S=2|K0〉. These
matrix elements should vanish in the chiral limit. On
the other hand, the operators O3/2

7,8 , having a left–right
Dirac structure, obey different renormalization proper-
ties. The corresponding matrix elements 〈π+|O3/2

7,8 |K+〉
do not vanish in the chiral limit.

– Important information on the physics beyond the stan-
dard model, such as SUSY, can be obtained by study-
ing Flavour Changing Neutral Currents (FCNC) pro-
cesses and, in particular, ∆F = 2 transitions (see [27]
and references therein for a discussion). Besides the
B parameters of the operators listed above, such pro-
cesses also require the knowledge of the B parameters
of the operators

(s̄A(1 − γ5)dA)(s̄B(1 − γ5)dB)

(s̄A(1 − γ5)dB)(s̄B(1 − γ5)dA)

(s̄A(1 − γ5)dA)(s̄B(1 + γ5)dB) (5)

(s̄A(1 − γ5)dB)(s̄B(1 + γ5)dA)

Recent lattice results on all these B parameters (with Wil-
son fermions) can be found in [18,28–30].

The matrix elements discussed above are extracted
from the large-time asymptotic behaviour of three-point
correlation functions of the form 〈PKO∆S=2PK〉 and
〈P †
KO

3/2
k Pπ〉 (for k = 7, 8, 9, 10) where PK and Pπ are

pseudoscalar sources of suitable quark flavour. Expressed
in terms of traces of quark propagators, these correlation
functions correspond to the so-called eight-shaped quark
diagrams. Any eye-shaped contributions of these correla-
tion functions cancel in the limit of degenerate up and
down quarks, which is the case under study.

The paper is organized as follows: In Sect. 2, we il-
lustrate, as a concrete example of the problems arising in
lattice renormalization, the mixing of the operatorO∆S=2.
Its matrix element 〈K̄0|O∆S=2|K0〉 is very sensitive to the
various systematic errors which affect its chiral behaviour
and therefore provides a good case study. In Sect. 3, we
discuss in full detail the problem of mixing under renor-
malization of all four-fermion dimension-six operators.
The operators are classified according to their discrete
symmetries, and an operator basis convenient for our pur-
poses is chosen. Subsequently, the operator mixing un-
der renormalization is divided into two parts: mixing that
would occur even if all the symmetries were respected by
the regulator, and mixing which is induced on the lattice
by the chiral symmetry breaking of the Wilson term. In
Sect. 4, the NP renormalization is applied to the cases
at hand. The renormalization conditions of the so-called
RI (or MOM) scheme are worked out in terms of pro-
jected amputated Green’s functions, for the complete op-
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erator basis2. In Sect. 5, we derive WI suitable for the
determination of the lattice-mixing coefficients in the chi-
ral limit. We show that, in this respect, the RI and the
WI methods are equivalent in the region of large external
momenta. We also show the independence of the lattice-
mixing coefficients from the renormalization scale. Finally,
in Sect. 6, we present the renormalization constants and
lattice-mixing coefficients, obtained with the NP method,
with both the Wilson and the tree-level improved Clover
action at several values of the lattice bare coupling β.
Some of these results have been used in [29,30] in order
to derive fully nonperturbative estimates of the B param-
eters.

2 Renormalization of O∆S=2

and systematic errors

The testing ground for the restoration of chiral symmetry
in the continuum limit of lattice computations has been
the chiral behaviour of the matrix element
〈K̄0|O∆S=2|K0〉, which, if properly renormalized, vanishes
when the K meson becomes massless [31]. Although early
attempts with Wilson fermions [32]–[34] have given rea-
sonable measurements of BK , they have been less suc-
cessful in controlling this chiral behaviour3. The root of
the problem is the operator subtraction outlined above,
which we now discuss in some detail: O∆S=2 mixes with
other operators Oi of the same dimension but with “wrong
naive chirality”. Thus, the (µ-dependent) K0–K̄0 matrix
element of the renormalized operator Ô∆S=2 is given in
terms of the (a-dependent) bare matrix elements by:

〈K̄0|Ô∆S=2(µ)|K0〉 = lim
a→0

〈K̄0|Z∆S=2
0 (aµ, g2

0)

×
[
O∆S=2(a) +

∑
i

Z∆S=2
i (g2

0)Oi(a)

]
|K0〉 (6)

The overall renormalization constant Z∆S=2
0 (aµ, g2

0) is log-
arithmically divergent, whereas the Z∆S=2

i (g2
0) are finite

mixing coefficients; g2
0(a) is the lattice bare coupling (also

expressed as β = 6/g2
0). All Z can be calculated, at least

in principle, in PT, provided that µ, a−1 � ΛQCD. The
one-loop perturbative calculation of the Z, both for the
Wilson and Clover lattice actions, has been performed in
[8]–[9]. Although the renormalized operator Ô∆S=2(µ) is
constructed so as to have the correct chiral properties in
the continuum limit, the implementation of operator mix-
ing in early works [32]–[34] was subject to two main sys-
tematic errors:

2 For continuum calculations in the RI scheme and the
anomalous dimensions of the complete basis of operators, cal-
culated in PT to NLO, see [5].

3 BK has also been obtained with staggered fermions [35]
mainly in the quenched approximation (see [36] for a review).
The (surviving) chiral symmetry in the staggered fermion for-
malism ensures the vanishing of the relevant matrix element in
the chiral limit.

1. The overall renormalization constant Z∆S=2
0 and the

mixing coefficients Z∆S=2
i were calculated in one-loop

PT. Thus they suffered from O(g4
0) systematic errors.

2. The bare matrix elements 〈K̄0|O∆S=2(a)|K0〉 and
〈K̄0|Oi(a)|K0〉 were calculated nonperturbatively (nu-
merically) with the Wilson action at fixed cutoff a (i.e.,
fixed coupling g2

0). They were therefore subject to O(a)
systematic errors.

Both sources of systematic error may be considered re-
sponsible for the nonvanishing of the matrix element
〈K̄0|Ô∆S=2|K0〉 in the chiral limit. In order to reduce
these errors, the following remedies have been proposed:

1. Boosted perturbation theory (BPT) should, according
to [37], improve the behaviour of the perturbative se-
ries of the renormalization constants. The systematic
error due to the one-loop truncation of the BPT es-
timates of the Z remains O(g4

0), but it is hoped that
it is smaller than the O(g4

0) error of the original PT
expansion.

2. Discretization errors can be reduced by using improved
actions and operators. To this purpose, besides the
Wilson action, the Clover action [38] has also been
implemented in the calculation of the weak matrix ele-
ments 〈K̄0|O∆S=2(a)|K0〉 and 〈K̄0|Oi(a)|K0〉. Matrix
elements of tree-level improved operators, calculated
with the tree-level improved Clover action, have dis-
cretization errors of O(g2

0a), instead of O(a) as in the
Wilson case4.

3. Using the nonperturbative (NP) method of [20,21], a
more accurate evaluation of the renormalization con-
stants can be achieved. The method consists in im-
posing renormalization conditions directly on quark
four-point Green’s functions with operator insertions.
Higher-order contributions, including nonperturbative
effects, are taken into account. With this method, the
Z have the same discretization errors (due to the finite-
ness of the lattice spacing) as the operator matrix ele-
ments we are ultimately interested in. Another nonper-
turbative method consists in the determination of the
mixing coefficients from WI on quark states [18]. We
stress that the WI method can be applied only to the
lattice-mixing coefficients; the overall renormalization
Z∆S=2

0 (aµ, g2
0) can be determined only nonperturba-

tively from NP methods; e.g., those of [19–21]. Both
WI and NP results are expected to have similar dis-
cretization errors.

The systematic errors of the operator renormalization de-
scribed by (6) depend upon the method of calculation of
its various terms: if PT (or BPT) is used for the Z and
the Wilson action for the matrix elements, the renormal-
ization is good to O(g4

0) and O(a). If PT (or BPT) is
used for the Z and the tree-level Clover action is used for
the matrix elements, the renormalization is good to O(g4

0)
4 Recently, it was shown that the nonperturbative Clover im-

provement proposed in [19] reduces the above error to O(a2).
We have not implemented this version of the Clover action in
the present work, because it involves more complicated opera-
tor mixing.
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and O(g2
0a). If NP (or WI) renormalization is used for

the Z then the error is O(a) or O(g2
0a), depending on the

action used (Wilson or tree-level Clover). Of course, the
same considerations are valid for the renormalization of
the operators of (3)–(5).

A study of the effect of each of these three improve-
ments had first been made in [39], in which a direct com-
parison of the various errors in the computation of the
∆S = 2 matrix element was carried out. The main result
of [39] is that the chiral behaviour of the renormalized
〈K̄0|Ô∆S=2|K0〉 is not improved significantly if BPT is
used for the calculation of the mixing constants Z∆S=2

i
and the Clover action is implemented in the computation
of the matrix elements5. What really makes a difference
is the NP computation of the Z, which was shown to im-
prove significantly the chiral behaviour of the matrix el-
ement. This conclusion has been confirmed in [18] with
Wilson fermions and for several β values. We stress that
in [18] the nonperturbative computation of the mixing Z
is performed using WI on quark states, as opposed to the
NP method of [39].

In all early works, [39] included, the renormalization of
O∆S=2 consisted in the mixing with only three dimension-
six operators with the wrong naive chirality. This mixing
had been explicitly derived in [8], using lattice PT at one-
loop. However, by applying the general symmetry argu-
ments of [41] to the case in hand, one can show that a
fourth operator should be added in the sum of (6), as
pointed out in [18,24,33]. This operator, absent at the
one-loop level of PT, has a mixing constant which is at
least O(g4

0). It gives a small (but nonnegligible) contri-
bution to the restoration of the chiral behaviour of the
matrix element [24]. In [24,29] and the present work, this
operator, omitted in [39], has been properly taken into
account.

3 Mixing of dimension-six four-fermion
operators on the lattice

In this section, we introduce the basic notation and study
the mixing of generic four-fermion operators in the pres-
ence of explicit chiral symmetry breaking, induced by the
Wilson term. This implies that mixing with operators with
the wrong naive chirality is allowed, even in the chiral
limit. Following [41] (see also [33]), we obtain the com-
plete basis of dimension-six, four-fermion operators which
mix under renormalization, relying on general symmetry
arguments based on the vector flavour symmetry, which
survives on the lattice. In order to solve this problem, it is
convenient to work with massless fermions with four dis-
tinct flavours ψf , f = 1, . . . , 4. The correlation functions
arising from these operators do not contain eye-shaped
contributions, and therefore their renormalization prop-
erties are identical, up to trivial factors, to those of the
physical ∆S = 2 and ∆I = 3/2 operators considered in
Sect. 1 (recall that we are assuming SU(2)-isospin symme-
try). The introduction of light masses (i.e., masses which

5 For a different conclusion, see [40]

Table 1. Classification of four-fermion operators OΓ (1)Γ (2) ac-
cording to P and useful products of their discrete symmetries
C, S ′ and S ′′. These properties are also valid for the operators
OtaΓ (1)taΓ (2) . For the operators OF

Γ (1)Γ (2) and OF
taΓ (1)taΓ (2) ,

we must exchange the entries of the columns CS ′ ↔ CS ′′ and
CPS′ ↔ CPS ′′. Note that OT̃ T̃ = OTT and OTT̃ = OT̃T

OΓ (1)Γ (2) P CS ′ CS ′′ CPS ′ CPS ′′

OV V +1 +1 +1 +1 +1
OAA +1 +1 +1 +1 +1
OPP +1 +1 +1 +1 +1
OSS +1 +1 +1 +1 +1
OTT +1 +1 +1 +1 +1
OV A −1 −1 −OAV +1 OAV

OAV −1 −1 −OV A +1 OV A

OSP −1 +1 OPS −1 −OPS

OPS −1 +1 OSP −1 −OSP

OTT̃ −1 +1 +1 −1 −1
O[V A+AV ] −1 −1 −1 +1 +1
O[V A−AV ] −1 −1 +1 +1 −1
O[SP−PS] −1 +1 −1 −1 +1
O[SP+PS] −1 +1 +1 −1 −1

OTT̃ −1 +1 +1 −1 −1

are much smaller than the renormalization scale) will be
discussed in Sect. 5.2. We will not address the problem of
heavy masses (on the order of, or greater than the typical
scales and the UV cutoff) in this work.

We define the generic four-fermion operators

OΓ (1)Γ (2) = (ψ̄1Γ
(1)ψ2)(ψ̄3Γ

(2)ψ4),

OtaΓ (1)taΓ (2) = (ψ̄1t
aΓ (1)ψ2)(ψ̄3t

aΓ (2)ψ4),

OFΓ (1)Γ (2) = (ψ̄1Γ
(1)ψ4)(ψ̄3Γ

(2)ψ2),

OFtaΓ (1)taΓ (2) = (ψ̄1t
aΓ (1)ψ4)(ψ̄3t

aΓ (2)ψ2), (7)

where Γ (1) and Γ (2) denote any Dirac matrices and ta are
the colour-group generators (referred to as colour matrices
in this work). For notation and conventions, see Appendix
A.

3.1 Operator classification according
to discrete symmetries

Let us start by addressing the problem of mixing of the
generic operators of (7) under renormalization. First of all,
we stress that they cannot mix with operators of lower di-
mensionality, because such operators do not have the four-
flavour content of the original ones6. Thus, OΓ (1)Γ (2) can
mix with any other dimension-six operator, provided it
has the same quantum numbers (i.e., any operator which
has the symmetries of OΓ (1)Γ (2) and of the action). The

6 This statement remains true for the operators of (2)–(5).
The ∆I = 1/2 operator, however, mixes in general with oper-
ators of dimension five and three.
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generic QCD Wilson lattice action with four degenerate
quarks is symmetric under parity P, and charge conjuga-
tion C. Moreover, there are three other useful (flavour)
symmetries of the action, namely the flavour exchange
symmetry S ≡ (ψ2 ↔ ψ4) and the switching symmetries
S ′ ≡ (ψ1 ↔ ψ2, ψ3 ↔ ψ4) and S ′′ ≡ (ψ1 ↔ ψ4, ψ2 ↔ ψ3)
[41]. In Table 1, we classify the operators OΓ (1)Γ (2) , for
all Γ (1) and Γ (2) combinations of interest, according to
the discrete symmetries P, C, S ′ and S ′′. Parity-violating
operators (middle section of the Table), for which CS ′′ is
not a symmetry, have been (anti)symmetrized in order to
obtain eigenstates of CS ′′ (bottom section of the Table).
We adopt the notation

O[Γ (1)Γ (2)±Γ (2)Γ (1)] = OΓ (1)Γ (2) ±OΓ (2)Γ (1) . (8)

Note that the results of Table 1 apply also to the operators
OtaΓ (1)taΓ (2) since, upon performing the symmetry trans-
formations, sign differences resulting from the presence of
the colour ta matrix disappear because the colour matrices
appear quadratically. On the other hand, OF

Γ (1)Γ (2) is ob-
tained by applying S on OΓ (1)Γ (2) . Since S transforms S ′
into S ′′, the properties of Table 1 also apply to OF

Γ (1)Γ (2) ,
but with all S ′ and S ′′ columns exchanged. Again, the op-
erator OF

taΓ (1)taΓ (2) has the same properties as OF
Γ (1)Γ (2) ,

since the colour matrix ta appears quadratically.
Our aim is to find complete bases of operators which

mix under renormalization. Thus, the first task is the elim-
ination of the operators which are not independent. In
particular, given the mixing of OΓ (1)Γ (2) with all other al-
lowed OΓ (i)Γ (j) and OF

Γ (i)Γ (j) , we do not need to consider
also the mixing with the OtaΓ (i)taΓ (j) and OF

taΓ (i)taΓ (j) ,
since they can be expressed in terms of the OΓ (i)Γ (j) and
the OF

Γ (i)Γ (j) . This can be seen by applying the standard
identity of colour matrices (Fierz transformation of colour
indices)

taABt
a
CD = − 1

2Nc
δABδCD +

1
2
δADδCB (9)

on the ta of a given operator. For the operator OtaΓ (i)taΓ (j)

the result has the general form

OtaΓ (i)taΓ (j) = − 1
2Nc

OΓ (i)Γ (j) +
1
2

∑
n,m

CnmO
F
Γ (n)Γ (m)

(10)
where the sum runs over all the Dirac matrices obtained
by the Fierz transformation of Γ (i)Γ (j). The factors Cnm
are the appropriate constants of the Fierz transformation
of the Dirac matrices (see Appendix B for details on Fierz
transformations in Dirac space). Analogously, we can ex-
press OF

taΓ (i)taΓ (j) in terms of OΓ (i)Γ (j) and OF
Γ (i)Γ (j) .

Therefore, in the following, it is adequate to limit our-
selves to the mixing of OΓ (i)Γ (j) and OF

Γ (i)Γ (j) , which form
a complete basis of 20 independent operators (these are
the 5 operators of the top section of Table 1, the 5 opera-
tors of the bottom section and their 10 OF counterparts).

Furthermore, by classifying the operators according to
the discrete symmetries listed in Table 1, the original basis
of 20 operators can be further decomposed into smaller

independent bases. An immediate decomposition is that
into 2 bases, of 10 operators each, with definite parity
(P = ±1). Further decompositions occur upon using the
remaining CPS ′, CPS ′′ and S symmetries. These we now
perform case by case.

3.2 Parity-conserving operators

All of the parity-conserving operators OΓΓ are eigenstates
of all the discrete symmetries listed above, with eigenvalue
+1. Therefore, each of them can mix with the other four,
and also with the five OFΓΓ ; the complete basis consists of
ten operators. We now rotate our basis into a new one,
consisting of ten operators which are also eigenstates of S
with eigenvalues ±1:

O±
ΓΓ =

1
2

[
OΓΓ ±OFΓΓ

]
(11)

=
1
2

[
(ψ̄1Γψ2)(ψ̄3Γψ4) ± (ψ̄1Γψ4)(ψ̄3Γψ2)

]
.

Clearly, the five O+
ΓΓ , corresponding to S = +1, mix only

among themselves; the same is true for the O−
ΓΓ which

have S = −1. Thus the original basis of ten operators
has been decomposed into two independent bases of five
operators each.

In this work, since we are eventually interested in the
renormalization of the operators of (2)–(5), we opt for the
basis

Q±
1 ≡ O±

[V V+AA],

Q±
2 ≡ O±

[V V−AA],

Q±
3 ≡ O±

[SS−PP ], (12)

Q±
4 ≡ O±

[SS+PP ],

Q±
5 ≡ O±

TT .

Other choices of basis can be found in [8,18]. All such
bases are simply linear combinations of each other.

3.3 Parity-violating operators

The parity-violating four-fermion operators listed in the
bottom section of Table 1 do not all have identical CPS ′

and CPS ′′ values. We will now establish their mixing pat-
tern, with the aid of S symmetry.

The operator O[V A+AV ] mixes with OF[V A+AV ] only,
forming a basis of two operators with CPS ′ = CPS ′′ =
+1. In analogy to the parity-conserving case, we rotate
this basis into

O±
[V A+AV ] ≡ 1

2

[
O[V A+AV ] ±OF[V A+AV ]

]
(13)

Since O+
[V A+AV ] has S = +1 and O−

[V A+AV ] has S = −1,
they do not mix with each other; the two operators renor-
malize multiplicatively. In other words, the original basis
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of two operators has been decomposed into two bases of
one operator each.

The operatorsO[V A−AV ] andOF[SP−PS] mix, since they
both have CPS ′ = +1 and CPS ′′ = −1. Similarly,
OF[V A−AV ] and O[SP−PS] form another basis, with CPS ′ =
−1, CPS ′′ = +1. It is convenient to combine these two
bases into four operators:

O±
[V A−AV ] ≡ 1

2

[
(O[V A−AV ] ±OF[V A−AV ]

]
O±

[SP−PS] ≡ 1
2

[
O[SP−PS] ±OF[SP−PS]

]
(14)

None of these operators have definite CPS ′ or CPS ′′. How-
ever, they have definite S = ±1. There is mixing be-
tween the two S = +1 operators (O+

[V A−AV ], O
+
[SP−PS])

and also between the two S = −1 operators (O−
[V A−AV ],

O−
[SP−PS]).

We follow a similar line of reasoning for the operators
O[SP+PS], OF[SP+PS], OT T̃ and OF

TT̃
(all have CPS ′ =

CPS ′′ = −1). We rotate the basis of these four operators
into

O±
[SP+PS] ≡ 1

2

[
O[SP+PS] ±OF[SP+PS]

]
,

O±
T T̃

≡ 1
2

[
OT T̃ ±OF

TT̃

]
. (15)

Thus, once more, the original basis of the four operators of
(15) can be decomposed into two bases, of two operators
each, with definite S = ±1.

For reasons of notational compactness, we will use the
following redefinitions:

Q±
1 ≡ O±

[V A+AV ],

Q±
2 ≡ O±

[V A−AV ],

Q±
3 ≡ −O±

[SP−PS], (16)

Q±
4 ≡ O±

[SP+PS],

Q±
5 ≡ O±

T T̃
.

3.4 Operator subtraction and chiral symmetry

This completes the discussion of the mixing of dimension-
six operators on the lattice, in the general case of four
distinct flavours. We now summarize the result to keep in
mind. For the parity-conserving operators, the renormal-
ization is given by

Q̂±
i = Z±

ijQ
±
j (i, j = 1, . . . , 5), (17)

whereas for the parity-violating ones, we have

Q̂±
i = Z±

ijQ±
j (i, j = 1, . . . , 5), (18)

where Q̂±
i and Q̂±

i are the bases of renormalized oper-
ators and Z±

ij and Z±
ij are the renormalization matrices

(summation over repeated indices is implied).

On the basis of CPS symmetries, it is important to
notice that the matrix Z±

ij is a (relatively sparse) block
diagonal matrix. We show this explicitly by re-writing the
last equation according to the allowed mixing of the op-
erators derived in the previous subsection:



Q̂1

Q̂2

Q̂3

Q̂4

Q̂5




±

=




Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55




± 


Q1

Q2

Q3

Q4

Q5




±

. (19)

The abbreviated notation with the ± superscript of the
column vectors and matrix should be transparent to the
reader. In conclusion, the lattice does not induce extra
subtractions for the parity- violating sector (Q±

k ; k =
1, . . . , 5), since the mixing occurring according to the pat-
tern of (19), is also valid in the χRS scheme; see below.

In the case of parity-conserving operators, we proceed
in a different way. We find it convenient to separate the
above operator mixing into two classes: (1) the lattice sub-
traction, which consists in correcting the operator mixing
induced by the breaking of chiral symmetry due to the
Wilson term of the action; (2) the subtraction that sur-
vives in the continuum limit. In order to facilitate this
separation, let us suppose that there is a regularization
scheme which, unlike the lattice, respects chiral symme-
try; i.e., the regularized action has no chiral symmetry-
breaking term (recall we are working at zero-quark mass).
We will call this hypothetical scheme the chirally symmet-
ric regularization scheme (χRS for short). In this scheme,
we can use chiral symmetry in order to establish some ex-
tra selection rules for the renormalization of the operators
of interest. Although the resulting operator renormaliza-
tion is incomplete on the lattice, it is the one which should
be recovered in the the continuum limit, since the renor-
malized theory must have the desired chiral properties.
The remaining lattice subtractions are due to the pres-
ence of the Wilson term.

In order to derive the selection rules in the
χRS scheme, it is adequate to consider two discrete ax-
ial symmetries. The first (denoted by χ24) acts only on
flavours 2 and 4:

ψ2 → iγ5ψ2 ; ψ̄2 → iψ̄2γ5

ψ4 → iγ5ψ4 ; ψ̄4 → iψ̄4γ5 (20)

The second symmetry (denoted as χ12) acts only on
flavours 1 and 2:

ψ1 → iγ5ψ1 ; ψ̄1 → iψ̄1γ5

ψ2 → iγ5ψ2 ; ψ̄2 → iψ̄2γ5 (21)

Under these transformations, the four-fermion operators
transform as shown in Table 2. The symmetry χ12 im-
plies that Q±

1 renormalize multiplicatively, whereas Q+
4

and Q+
5 (Q−

4 and Q−
5 ) mix with each other. From the χ24

symmetry we deduce that Q+
2 and Q+

3 (Q−
2 and Q−

3 ) also
mix with each other. In the absence of explicit chiral sym-
metry breaking, we conclude that the mixing structure is
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Table 2. Classification of four-fermion parity-conserving operators Q±
k (k =

1, . . . , 5), according to the discrete symmetries χ24 and χ12. The parity-violating
operators Q±

k (k = 1, . . . , 5) transform in the same way

Symmetry Q+
1 Q+

2 Q+
3 Q+

4 Q+
5 Q−

1 Q−
2 Q−

3 Q−
4 Q−

5

χ24 −1 +1 +1 −1 −1 −1 +1 +1 −1 −1
χ12 +1 Q−

2 −Q−
3 −1 −1 +1 Q+

2 −Q+
3 −1 −1

the same as that considered above for the parity-violating
counterparts. The corresponding parity-conserving oper-
ators (Q±

k ; k = 1, . . . , 5), belonging to the same chiral
representations, would have a χRS mixing pattern similar
to that of (19):




Q̂1

Q̂2

Q̂3

Q̂4

Q̂5




±

=




Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55




± 


Q̃1

Q̃2

Q̃3

Q̃4

Q̃5




±

(22)

where the Q̃i represent the bare operators in the χRS
scheme. In the presence of the Wilson term, the Q̃i are
the lattice-subtracted operators, defined as




Q̃1

Q̃2

Q̃3

Q̃4

Q̃5




±

=




Q1

Q2

Q3

Q4

Q5




±

+




0 ∆12 ∆13 ∆14 ∆15

∆21 0 0 ∆24 ∆25

∆31 0 0 ∆34 ∆35

∆41 ∆42 ∆43 0 0
∆51 ∆52 ∆53 0 0




±

×




Q1

Q2

Q3

Q4

Q5




±

. (23)

In other words, first the lattice subtraction is performed,
followed by the χRS renormalization. The above mixing
pattern is abbreviated, in matrix form, as

Q̂± = Z±
χ Q̃

±

Q̃± = [I +∆±]Q± (24)

where I is the 5×5 unit matrix and the subscript χ stands
for χRS subtractions7. The renormalization of the parity-
conserving sector is given by Z± = Z±

χ [I+∆±]. Note that
using continuous chiral transformations, in the hypothet-
ical χRS, it is easy to show that ∆± = 0 and Zij = Zij .

7 Attention is drawn to the notation adopted from here on in
this paper: Whereas the elements of matrices Z± and ∆± are
denoted, in standard fashion, as Z±

ij and ∆±
ij , those of matrix

Z±
χ are denoted by Z±

ij (i.e., the subscript χ is dropped for
notational economy). The elements of matrix Z±, appearing
in (17), will not be used from here on.

4 NP renormalization: the lattice RI
renormalization scheme

In this section, we outline the strategy used in the deter-
mination of the renormalization constants and discuss the
appropriate renormalization conditions. According to the
NP method proposed in [20], the renormalization condi-
tions are imposed in momentum space on the projected
amputated Green’s functions. In this work we will always
consider Green’s functions to be those where all exter-
nal quark legs have the same momentum p. This choice
is, of course, not unique; but it is the simplest way to
regulate the infrared divergences. An important point is
that the renormalization conditions need to be imposed
at large Euclidean p2. In the determination of the mix-
ing coefficients, this condition enables us to neglect soft
or spontaneous chiral symmetry-breaking effects that are
not induced by the Wilson term and cannot be computed.
As demonstrated in Sect. 5, only at large external mo-
menta is the NP method (described below) equivalent to
the WI one. The large p2 condition is also necessary in the
evaluation of the overall renormalization constants, since
the standard procedure of obtaining physical amplitudes
from renormalized matrix elements requires perturbative
matching with the Wilson coefficients in the continuum,
at fixed gauge coupling. We will describe in Sect. 4.3 an
alternative procedure for which this condition can be re-
laxed.

The renormalization method presented in this section
is an extension of the one introduced in [21] for the renor-
malization of the O∆S=2 four-fermion operator. As in [21],
we will define projected amputated Green’s functions, on
which suitable renormalization conditions will be imposed.
With respect to [21], the novelties consist in using a com-
plete operator basis for the parity-conserving sector and
in extending the method to the parity-violating operators.

4.1 Amputated Green’s functions and their projectors

We first give some general definitions. Since the nonper-
turbative renormalization conditions are to be imposed on
quark states, we shall need the general expression of the
four-point Green’s functions of the operators O±

Γ (1)Γ (2) .
Denoting by x1, x3 and x2, x4 the coordinates of the out-
going and incoming quarks respectively, we define the con-
nected one-particle irreducible Green’s functions as

G±
Γ (1)Γ (2)(x1, x2, x3, x4)

= 〈ψ1(x1)ψ̄2(x2)O±
Γ (1)Γ (2)(0)ψ3(x3)ψ̄4(x4)〉 , (25)
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where 〈· · ·〉 denotes the vacuum expectation value. In the
quenched approximation, this is the average over the gauge-
field configurations. The generic four-fermion operator
OΓ (1)Γ (2) , placed at the origin, is written as

O±
Γ (1)Γ (2)(0) =

1
2

[
ψ̄1(0)Γ (1)mψ2(0)ψ̄3(0)Γ (2)mψ4(0)

±ψ̄1(0)Γ (1)mψ4(0)ψ̄3(0)Γ (2)mψ2(0)
]
. (26)

Given the complexity of the notation, we shall elaborate
on this formula. In the case of parity conserving opera-
tors, the two Dirac matrices are equal; i.e., we are dealing
with the O±

ΓΓ of (12). The case of two different Dirac
matrices Γ (1) 6= Γ (2) applies to the parity-violating op-
erators of (13)–(15), for which, for example, Γ (1) = V
and Γ (2) = A. Note that G±

Γ (1)Γ (2) depends implicitly on
the four-colour and Dirac indices carried by the external
fermion fields. These will be shown explicitly from here
on. Following the conventions of Appendix A, upper-case
Latin superscripts (A,B, . . . , R, S, . . .) will denote colour
indices of the fundamental SU(3) representation. Greek
lower-case subscripts (α, β, . . . , ρ, σ, . . .) will denote spinor
indices. The letters m and n are reserved for the Lorentz
indices of the Dirac matrices. Repeated Lorentz indices
are summed according to the convention adopted in Ap-
pendix A.

The Fourier transform of the nonamputated Green’s
function (25), at equal external momenta p, has the form

G±
Γ (1)Γ (2)(p)ABCDαβγδ =

1
2

[
〈Γ (1)m(p)ABαβ Γ

(2)m(p)CDγδ 〉

∓〈Γ (1)m(p)ADαδ Γ
(2)m(p)CBγβ 〉

]
, (27)

where

Γ (i)m(p)ABαβ = S(p|0)ARαρ Γ
(i)m
ρσ [γ5S(p|0)†γ5]RBσβ , (i = 1, 2)

(28)
and S(p|0) is defined by

S(p|0) =
∫

d4xS(x|0)e−ip·x. (29)

S(x|0) is the inverse of the lattice Dirac operator; i.e., it
is the quark propagator computed on a single gauge-field
configuration and is therefore not translationally invariant
(cf. Sect. 4 of [20]). It satisfies the relation

S(x|0) = γ5S
†(0|x)γ5. (30)

The amputated Green’s function is obtained from (27),

Λ±
Γ (1)Γ (2)(p)RSR

′S′
ρσρ′σ′ = S−1(p)RAρα S

−1(p)R
′C

ρ′γ

×G±
Γ (1)Γ (2)(p)ABCDαβγδ

×S−1(p)BSβσ S
−1(p)DS

′
δσ′ (31)

where S(p) = 〈S(p|0)〉 is the Fourier transform of the
translationally invariant quark propagator, i.e., the
Fourier transform of S(x|0), averaged over the gauge-field
configurations.

The amputated Green’s function of (31) is a high-rank
tensor, from which a more manageable function of the
external momenta p can be obtained by projecting over all
the possible Dirac structures. Let us introduce a generic
Dirac projector

IPΓ̂ (1)Γ̂ (2) ≡ (Γ̂ (1)n ⊗ Γ̂ (2)n); (32)

its application on the amputated Green’s functions is de-
fined as8:

Tr IPΓ̂ (1)Γ̂ (2)Λ
±
Γ (1)Γ (2)(p) =

(
Γ̂ (1)n
σρ ⊗ Γ̂

(2)n
σ′ρ′

)
×Λ±

Γ (1)Γ (2)(p)RRR
′R′

ρσρ′σ′ , (33)

The trace is taken over spin and colour. The projectors
IPΓ̂ (1)Γ̂ (2) can be worked out analytically for the tree-level
amputated Green’s function

Λ
±(0)
Γ (1)Γ (2)(p)RSR

′S′
ρσρ′σ′ =

1
2

[
δRSδR

′S′ (
Γ (1)m
ρσ ⊗ Γ

(2)m
ρ′σ′

)
∓δRS′

δR
′S

(
Γ

(1)m
ρσ′ ⊗ Γ

(2)m
ρ′σ

)]
(34)

The superscript (0) denotes tree level. From (33) and (34),
one finds

Tr IPΓ̂ (1)Γ̂ (2)Λ
±(0)
Γ (1)Γ (2)(p)

= (Γ̂ (1)n
σρ ⊗ Γ̂

(2)n
σ′ρ′ )Λ±(0)

Γ (1)Γ (2)(p)RRR
′R′

ρσρ′σ′

=
1
2

[
N2
c

(
Tr Γ̂ (1)nΓ (1)m

)
(Tr Γ̂ (2)nΓ (2)m)

∓Nc
(
Tr Γ̂ (1)nΓ (1)mΓ̂ (2)nΓ (2)m

)]
, (35)

These formulas can now be used in the specific cases of
interest, namely the renormalization of the various parity-
violating and parity- conserving operators (i.e., Q±

k of (12)
and Q±

k of (16) with k = 1, . . . , 5). We will see shortly that,
for the renormalization conditions we will impose on the
quark correlation functions of the four-fermion operators,
it is convenient to use projectors that obey the following
orthogonality conditions:

Tr IP±
i Λ

±(0)
k = δik (i, k = 1, . . . , 5) (36)

Tr 1℘±
i J\±(0)

k = δik (i, k = 1, . . . , 5)

where Λ
(0)±
k and J\(0)±

k are the tree-level amputated
Green’s functions of operators Q±

k and Q±
k respectively

(k = 1, . . . , 5), and IP±
k , 1℘±

k their corresponding projec-
tors (k = 1, . . . , 5). In the following, we will denote as Λ±

k

and J\±
k the corresponding Green’s functions in the inter-

acting case. With the aid of (35), we find for the parity-
conserving case

IP±
1 ≡ +

1
64Nc(Nc ± 1)

(IPV V + IPAA),

IP±
2 ≡ +

1
64(N2

c − 1)
(IPV V − IPAA)

8 Other possible choices are admissible; see [2].
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± 1
32Nc(N2

c − 1)
(IPSS − IPPP ),

IP±
3 ≡ ± 1

32Nc(N2
c − 1)

(IPV V − IPAA)

+
1

16(N2
c − 1)

(IPSS − IPPP ), (37)

IP±
4 ≡ +

(2Nc ± 1)
32Nc(N2

c − 1)
(IPSS + IPPP )

∓ 1
32Nc(N2

c − 1)
IPTT ,

IP±
5 ≡ ∓ 1

32Nc(N2
c − 1)

(IPSS + IPPP )

+
(2Nc ∓ 1)

96Nc(N2
c − 1)

IPTT ,

whereas for the parity-violating one,

1℘±
1 ≡ − 1

64Nc(Nc ± 1)
(IPV A + IPAV ),

1℘±
2 ≡ − 1

64(N2
c − 1)

(IPV A − IPAV )

∓ 1
32Nc(N2

c − 1)
(IPSP − IPPS),

1℘±
3 ≡ ∓ 1

32Nc(N2
c − 1)

(IPV A − IPAV )

− 1
16(N2

c − 1)
(IPSP − IPPS), (38)

1℘±
4 ≡ +

(2Nc ± 1)
32Nc(N2

c − 1)
(IPSP + IPPS)

∓ 1
32Nc(N2

c − 1)
IPT T̃ ,

1℘±
5 ≡ ∓ 1

32Nc(N2
c − 1)

(IPSP + IPPS)

+
(2Nc ∓ 1)

96Nc(N2
c − 1)

IPT T̃ .

4.2 Renormalization conditions

We now define the renormalization procedure of the oper-
ators of interest. The general principle is to impose “suit-
able” renormalization conditions, which are satisfied by
the renormalized (projected amputated) Green’s functions

Λ̂± and Ĵ\±
at a fixed scale µ in the deep Euclidean re-

gion. The renormalization condition is arbitrary. A sim-
ple choice is to impose that the fully interacting Λ̂± (and

Ĵ\±
), at a given scale µ, are equal to their tree-level values

written in (35); see also (36).
We will use matrix notation for simplicity; the ampu-

tated projected Green functions Λ± and J\± denote 1× 5
row vectors, whereas the projectors IP± and 1℘± denote
5 × 1 column vectors. In this notation, (36) become

IP±Λ±(0) = I

1℘±J\±(0) = I (39)

with I the 5×5 unit matrix. For the parity-violating case,
the renormalized amputated Green’s function is given by
the row vector

Ĵ\±
(p/µ, g2) = Z−2

ψ

(
aµ, g2

0
) J\± (

ap, g2
0
)

×Z± (
aµ, g2

0
)T

(40)

where Zψ is the quark-field renormalization constant and
Z± is the 5 × 5 renormalization matrix (the superscript
T stands for transpose). Recall that Z± is the block di-
agonal matrix of (19). In the above expression, we denote
by g2

0 ≡ g2
0(a) the bare coupling and by g2 ≡ g2(µ) the

renormalized one. We express the bare Green function in
terms of a “dynamics” matrix D from which the tree-level
amputated Green’s function is factored out:

J\± = J\±(0)D±. (41)

Note that since the matrix D determines the dynamics
of the bare operators, it can mix only tree-level opera-
tors with the same discrete symmetries. Thus it is also a
block diagonal matrix with the same block structure as
Z±. From (39) and (41), the elements of the matrix D±

are expressed in terms of the amplitudes J\±:

D± = 1℘±J\±
. (42)

We compute J\± nonperturbatively, at fixed coupling g2
0

and in a given gauge, over a configuration ensemble. We
opt for the Landau gauge. From J\± and (42), we obtain
D±.

The renormalization conditions

1℘±Ĵ\±
(p/µ, g2)

∣∣∣∣∣
p2=µ2

= I (43)

determine the mixing matrix Z±. This is easily seen by
combining (39), (40), (42), and (43) to obtain

Z±−2
ψ D±Z±T = I, (44)

from which we obtain Z± in terms of the known quantities
Z±2
ψ and D±:

Z± = Z±2
ψ

[D± T]−1
. (45)

Note that since both D± and Z± have the same block
diagonal structure, this involves inverting at most 2 × 2
matrices.

The quark-field renormalization Zψ is also determined
nonperturbatively from the numerical simulation. A def-
inition which respects WI (cf. Sect. 4 of [20] for details)
is

Zψ = −i
1
12

Tr γµ
∂S(p)−1

∂pµ

∣∣∣∣∣
p2=µ2

; (46)

Instead, we have implemented

Zψ(µa) = −i
1
12

∑
µ=1,4 γµ sin(pµa)S(pa )−1

4
∑
µ=1,4 γµ sin2(pµa)

∣∣∣∣∣
p2=µ2

(47)
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in order to avoid derivatives w.r.t. discrete variables.
The computation of the parity-conserving matrix Z±

follows similar lines. Recall that this matrix can be cast in
the form Z±

χ [I +∆±], with Z±
χ the block diagonal matrix

of (22) and ∆± the sparse matrix of (23). We find it con-
venient to obtain Z±

χ and ∆± separately. As we will show
in the next section, Z±

χ depends on the renormalization
scale aµ, whereas ∆± does not. More importantly, as we
will also show in Sect. 5, the independence of ∆± from aµ
is due to the fact that the lattice subtractions can also be
determined from WI, in the spirit of [18]. Thus, our results
on ∆±, obtained in the RI scheme with the NP method,
can in principle be compared to those obtained with WI.

For the parity-conserving case, the fully interacting
renormalized amputated Green’s function is given by the
row 1 × 5 vector

Λ̂± (
p/µ, g2) = Z−2

ψ

(
aµ, g2

0
)
Λ± (

ap, g2
0
) [
I +∆± (

g2
0
)T

]
×Z±

χ

(
aµ, g2

0
)T

(48)

We express the bare Green’s function in terms of a dy-
namics matrix D±:

Λ± = Λ±(0)D±. (49)

From (39) and (49), the elements of the matrix D± are
expressed in terms of the amplitudes Λ±:

D± = IP±Λ±. (50)

Therefore D± can be computed nonperturbatively by nu-
merical simulation, at fixed bare coupling g2

0 , over a con-
figuration ensemble and in the Landau gauge. Once it is
computed, we determine the mixing matrix ∆± and the
renormalization matrix Z±

χ from the renormalization con-
ditions

IP±Λ̂±(p/µ, g2)

∣∣∣∣∣
p2=µ2

= I (51)

To see this explicitly, we combine (39), (48), (49), and
(50), in order to express (51) as follows:

Z−2
ψ D±[I +∆± T

]Z± T
χ = I. (52)

We then proceed in two steps. Let us first rewrite the
above expression as

D±
kl +

5∑
j=1

D±
kj∆

±
lj = Z2

ψ

[
Z± −1
χ

]
lk

(53)

(in matrix-component notation). We then consider the
special case, with indices k, l chosen so that for a given
fixed value k, the index l is allowed to run over the corre-
sponding lattice-subtracted values. For example, if we fix
k = 1, l runs over the range l = 2, 3, 4, 5; if we fix k = 2
or k = 3, l runs over the range l = 1, 4, 5, and so on.
With these choices of k, l, and given the structure of ma-
trix ∆± (cf. (23)), the summed index j runs over the same

interval as l (all other contributions involve zero matrix
elements of ∆±). Moreover, the r.h.s. vanishes for these
combinations of k, l, due to the block-diagonal structure
of the matrix Z±

χ (cf. (22)). Defining the column vector
c±l = D±

kl for fixed k and l running as detailed above, we
obtain the equation

∆±
ljc

±
j = −c±l . (54)

This is a linear nonhomogenous system, which can be
solved for ∆±

lj . Thus the mixing matrix is determined, and
the subtracted correlation function can be constructed.
We can now proceed to the second step, which is the de-
termination of the renormalization matrix Z±

χ . It can be
obtained exactly as in the parity-violating case; cf. (44)
and (45).

4.3 Range of validity of the RI renormalization scheme

Having completed our discussion on the determination of
the renormalization constants and mixing coefficients of
four-fermion operators using the NP method of [20], we
now summarize, the renormalization conditions. For the
parity-violating operators we have

Z−2
ψ Tr 1℘±J\±Z± T

∣∣∣∣∣
p2=µ2

= I. (55)

For the parity-conserving operators we have

Z−2
ψ Tr IP±Λ±Z± T

∣∣∣∣∣
p2=µ2

= Z−2
ψ Tr IP±Λ̃±Z± T

χ

∣∣∣∣∣
p2=µ2

= Z−2
ψ Tr IP±Λ±[I +∆± T]Z± T

χ

∣∣∣∣∣
p2=µ2

= I (56)

with Zψ determined from (47). In the last equation, Λ̃±
denotes the amputated Green’s function for the lattice-
subtracted parity-conserving operators. These conditions
constitute the RI scheme [20,4] (also known as the MOM
scheme). The name RI is chosen so as to distinguish it from
the MS scheme, adopted in perturbation theory, which de-
pends on the detailed choice of dimensional regularization
(e.g., ’t Hooft-Veltman, Dimensional Reduction, etc.). In
the RI scheme, the renormalized operator depends on the
gauge and on the momenta of the external states [20,21].
Unlike the MS, the RI scheme does not depend on the reg-
ularization. Since the renormalized matrix element must
be multiplied by the Wilson coefficient CW(µ) (cf. (1)), the
latter must be calculated in the same gauge and with the
same external states in order to obtain a renormalization-
group-invariant result. The Wilson coefficient is known in
next-to-leading-order continuum PT [4]; thus, its match-
ing with the renormalized matrix element is accurate to
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that order. Clearly, for the perturbative calculation of
CW(µ) to be reliable, we must ensure that µ � ΛQCD.

There is also another reason for which this condition
must be imposed: the RI conditions are such that the
renormalized operators transform according to irreducible
representations of the chiral algebra. This is achieved by
imposing that the projections of the renormalized opera-
tors on the “wrong” chiral structures vanish (cf. (56)).
But this not true when there are other causes of chiral
symmetry breaking, which are either the explicit presence
of mass terms or the spontaneous symmetry breaking in
the chiral limit. Such effects, present in QCD, would mod-
ify the r.h.s. of the renormalization conditions (55) and
(56) by form factors proportional to the quark massm, the
chiral condensate 〈ψ̄ψ〉, and the inverse scale µ−1. These
terms die off in the large-momentum region, µ � ΛQCD.

On the other hand, the nonperturbative renormaliza-
tion of the four-fermion operator in the RI scheme involves
computations of bare matrix elements at finite lattice cut-
off. In order to have good control of the discretization
errors, we must also ensure that µ � O(a−1). Thus, as
already pointed out in [20], the RI scheme is applicable
at couplings g2

0 and lattice sizes for which there exists a
window of µ values satisfying

ΛQCD � µ � O(a−1). (57)

The discussion leading to the necessity of the above
window of µ values is based on the assumption that the
operator renormalization is performed at fixed UV cutoff
(i.e., the gauge coupling is fixed in the numerical com-
putation). One can relax the bound of (57) by perform-
ing a sequence of computations at bare couplings g0(a),
g0(sa), g0(s2a), · · ·, corresponding to increasingly coarse
lattice spacings (i.e., the scaling factor s > 1; typically
s = 2). This method of lowering the renormalization scale
µ in a controlled NP way is reminiscent of the renormal-
ization procedure of [26], which, in turn, was inspired by
[19]. We outline it here in schematic fashion; wave-function
renormalization, operator subtractions, etc. will be omit-
ted for the sake of clarity. Realistically, with present-day
resources, this procedure can be iterated only two or three
times.

We first select a small coupling constant g2
0 , so that we

are safely in the perturbative region (i.e., g2
0 is smaller than

current values in standard QCD simulations). For such
small lattice spacings, the window of (57) is easily satisfied
by both momentum scales µ and µ/s used in the following.
We now choose a lattice of N lattice sites in each direction
(N is only limited by current computational capabilities),
in such a way that aµ � 1, in order to avoid (UV) lattice
artifacts, but is at the same time large enough to have
negligible finite size effects; i.e., aµ/s � 1/N . With small
g2
0 ∼ 0.7, and N ∼ 32–48, this lattice is adequate for sim-

ulations of quark correlation functions deep in the pertur-
bative region, but cannot accomodate hadronic quantities,
due to the smallness of its physical volume. Once the RI
scheme has been implemented at the scale µ, the renor-
malized correlation function of a given operator is known

at any scale p satisfying (57):

Λ̂

(
p

µ
, g2(µ)

)
= Z

(
aµ, g2

0 (a)
)
Λ

(
ap, g2

0 (a)
)
. (58)

In particular, we define

Λ̂1 ≡ Λ̂

(
1
s
, g2(µ)

)
, (59)

i.e., the renormalized vertex, at a scale p = µ/s. We
now increase the lattice spacing to a′ = sa. This is done
in practice by tuning the bare coupling, g2

0 , on a bigger
(coarser) lattice. For simplicity, since we have assumed
that finite size effects are negligible both at µ and µ/s,
we keep N fixed. On the coarser lattice, we compute the
bare correlation function at momentum p′ = µ/s (i.e., for
a′p′ = aµ). The renormalization constant at the scale µ
(for cutoff a′) can then be obtained from the equation

Λ̂1 = Z
(
a′µ, g2

0 (a′)
)
Λ

(
a′p′, g2

0 (a′)
)
, (60)

since the l.h.s. of this expression is known from the cal-
culation on the finer lattice (59). With the renormaliza-
tion constant Z

(
a′µ, g2

0 (a′)
)

thus obtained on the coarse
lattice, we now compute the bare correlation function at
momentum p′′ = µ/s2 (i.e., a′p′′ = aµ/s). For this mo-
mentum, we then have

Λ̂

(
1
s2
, g2(µ)

)
= Z

(
a′µ, g2

0 (a′)
)
Λ

(
a′p′′, g2

0 (a′)
)
. (61)

Thus the renormalized correlation function is now known
at a lower momentum scale 1/s2:

Λ2 ≡ Λ̂

(
1
s2
, g2(µ)

)
. (62)

One can now repeat the cycle: Going to a coarser lattice
a′′ = s2a, we compute the bare correlation function at mo-
mentum p′′ = µ/s2 (i.e., a′′p′′ = aµ). The renormalization
constant at scale µ is then obtained by solving

Λ2 = Z
(
a′′µ, g2

0 (a′′)
)
Λ

(
a′′p′′, g2

0 (a′′)
)

(63)

for Z
(
a′′µ, g2

0 (a′′)
)
. The bare correlation function is then

computed at momentum p′′′ = µ/s3 (i.e., a′′p′′′ = aµ/s)
and renormalized by Z at scale µ, giving the renormalized
correlation function at scale 1/s3:

Λ̂

(
1
s3
, g2(µ)

)
= Z

(
a′′µ, g2

0 (a′′)
)

×Λ (
a′′p′′′, g2

0 (a′′)
)
. (64)

At the end of the day, by keeping N fixed, we end up with
a lattice coarse enough to contain the hadrons, and an
operator, renormalized nonperturbatively at a low scale
µ/sn.
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5 Mixing coefficients from WI

In [18], an alternative approach to the NP renormalization
method has been applied. This is based on lattice WI on
quark states, in the spirit of [11,12,14]. The WI renormal-
ization has been implemented in [18] for the nonperturba-
tive evaluation of the mixing renormalization constants
of the ∆S = 2 matrix element of K0 − K̄0 oscillations.
In our language, this is the renormalization of the parity-
conserving operator Q+

1 . The WI were derived in momen-
tum space, the various chiral structures were projected out
(just as in [21] and the present work) and they were solved
for the mixing lattice coefficients ∆+

1k (for k = 2, . . . , 5).
The multiplicative renormalization constant Z+

11 was ob-
tained using the NP method of [20,21]. In principle, both
methods are equivalent (under certain conditions, which
will be discussed below) and suffer from the same sources
of systematic error. In practice, one may give more stable
results than the other. A systematic comparison of the two
methods is an interesting problem; for the ∆S = 2 case,
it has been carried out in [18].

Here we wish to extend this method to the complete
basis of operators. We will therefore write down the WI
that can be used for the extraction of all mixing coeffi-
cients (i.e., all the elements of the matrix ∆± of (23)).
We will also demonstrate explicitly that the WI method
for the determination of the lattice-mixing coefficients is
equivalent to the RI method. This equivalence is true, up
to discretization errors, provided the renormalization scale
µ of the RI scheme is large (cf. (57)) and that we are work-
ing in the chiral limit or with a mass-independent scheme.
The reasons for requiring a large µ for the RI scheme have
been explained in Sect. 4.3. We now present briefly the
reasons for which the implementation of the small m limit
for the WI scheme is required.

The WI holds for operators with the correct chiral
properties, i.e., multiplicatively renormalizable operators
transforming according to a well- defined representation of
the chiral algebra. By imposing the validity of the WI on
the renormalized operators one can fix the mixing coeffi-
cients of the operators which stem from the chiral violation
due to the Wilson term. However, this is true only in the
chiral limit, where chiral symmetry breaking is only due
to the presence of the Wilson term in the lattice action.
Upon introducing a mass term (soft symmetry breaking),
the continuum WI can only be recovered by the simulta-
neous redefinition of the T product and the operator. This
procedure is ambiguous, since a change in the definition
of the T product can be compensated by a redefinition
of the operator. Thus, away from the chiral limit, the WI
do not uniquely define the operator (and, consequently,
its mixing coefficients). This ambiguity is harmless if we
can apply low-energy theorems of current algebra (small
quark mass). This point has been discussed in [11], and
more recently in [42].

We will explicitly demonstrate in this section that the
WI method and the RI renormalization scheme are equiv-
alent methods for the determination of the lattice-mixing
coefficients, under the conditions discussed above. More-
over, we will show that the χRS renormalization matrices

Z and Zχ cannot be determined from WI. Only finite ra-
tios of χRS renormalization constants of opposite parity
are fixed by the WI. Thus the RI scheme (or some other
renormalization method) is necessary for their determina-
tion, even when the WI method is used in order to obtain
the lattice-mixing coefficients.

5.1 Ward identities on quark states

The validity of the above statements has been shown, in
a general and elegant way, in [42]. Our aim is much more
specific: We will obtain useful WI which can be used in
practice for the determination of the mixing coefficients of
all four-fermion operators of interest. The above general
statements will consequently be proven in the context of
these specific WI, which can be implemented in numeri-
cal simulation. In what follows, for reasons of uniformity
of presentation, we will continue to work with operators
which have four distinct flavours (unlike in [18], where the
flavour group used is SU(2) and the ∆S = 2 operator con-
sidered carries the strange and down physical flavours).
The most economical way of obtaining useful WI for the
four flavour operators defined in (12) and (16) consists in
the following trick. We consider an “embedding” of our
operators (with four distinct flavours) in a theory with
five flavours. In other words, our flavour-symmetry group
is SU(5)L⊗SU(5)R9. A suitable field variation of the fifth
flavour will then yield WI concerning the operators of (12)
and (16). Finally, since one of our aims is to propose WI
which can be used in simulations, we will be working with
a small, finite quark mass. It is to be understood through-
out the rest of this section that the chiral limit will be
taken at the end of the calculation.

We now establish our notation. For the purposes of
this section, ± superscripts will be dropped from operators
and correlation functions (for example, from the Q±, G±,
and Λ±). We will be using Green’s functions, which give
expectation values of the following operators:

Gk(x0;x1, x2, x3, x4)ABCDαβγδ = ψ1(x1)Aα ψ̄2(x2)BβQk(x0)

×ψ3(x3)Cγ ψ̄4(x4)Dδ ,

Gk(x0;x1, x2, x3, x4)ABCDαβγδ = ψ1(x1)Aα ψ̄2(x2)Bβ Qk(x0)

×ψ3(x3)Cγ ψ̄4(x4)Dδ , (65)

for k = 1, . . . , 5. The operators Qk and Qk on the r.h.s. are
those of (12) and (16); i.e., they are defined in terms of
fermion fields with flavours 1, · · · , 4. Their vacuum expec-
tation values are the four-quark correlation functions of
(25), which are the starting point of the RI renormaliza-
tion procedure. We will also be using five other operators
(and their four-quark correlation functions) which are de-
fined as follows:

Ğk(x0;x1, x2, x3, x4)ABCDαβγδ = ψ1(x1)Aα ψ̄2(x2)Bβ Q̆k(x0)

9 At the end of this subsection, we will comment on the rel-
evance of our results to the physical case of three light-quark
flavours.
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×ψ3(x3)Cγ ψ̄4(x4)Dδ ,

G5
k(x0;x1, x2, x3, x4)ABCDαβγδ = [γ5ψ5(x1)]

A
α ψ̄2(x2)Bβ Q̆k(x0)

×ψ3(x3)Cγ ψ̄4(x4)Dδ , (66)

where

Q̆±
k =

(
ψ̄5Γ

(1)ψ2

) (
ψ̄3Γ

(2)ψ4

)
±

(
ψ̄5Γ

(1)ψ4

) (
ψ̄3Γ

(2)ψ2

)
, (67)

and k = 1, · · · , 5 stands for the combination of Dirac ma-
trices corresponding to the definitions of (16). In other
words, Q̆±

k is obtained from Q±
k by substituting ψ̄1 by ψ̄5.

The operators G5
k are obtained from Gk, with the substi-

tution (ψ1, ψ̄1) → (γ5ψ5, ψ̄5). The colour and spin indices
(A,B, . . . and α, β, . . .) will be dropped from now on for
notational simplicity. We will also need the axial current
and pseudoscalar density

Aµ(x) = ψ̄1(x)γµγ5ψ5(x),
P (x) = ψ̄1(x)γ5ψ5(x). (68)

We perform infinitesimal axial transformations on
quark fields in terms of the SU(5) raising operator

λ =




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , (69)

which induces transformations between the first and fifth
flavours only:

ψ1 → ψ1 + iδαγ5ψ5,

ψ̄5 → ψ̄5 + iδαψ̄1γ5. (70)

Correspondingly, operators Q̆ transform into theirQ coun-
terparts:

Q̆1 → Q̆1 − iδαQ1,

Q̆2 → Q̆2 + iδαQ2,

Q̆3 → Q̆3 + iδαQ3, (71)

Q̆4 → Q̆4 + iδαQ4,

Q̆5 → Q̆5 + iδαQ5.

Whenever convenient, matrix notation will be used, as in
Sect. 4.2. We define the 1 × 5 row vectors

Ğ = (Ğ1, Ğ2, Ğ3, Ğ4, Ğ5),
G = (−G1, G2, G3, G4, G5), (72)
G5 = (G5

1 ,G5
2 ,G5

3 ,G5
4 ,G5

5).

Note the minus sign in the element G1 of vector G; it has
been introduced in its definition in order to take into ac-
count the minus sign of the axial variation of Q̆1; cf. (71).

The lattice WI arising from this axial variation of the
1 × 5 row vector 〈Ğ〉 is

δ

δα(x)
〈Ğ(x0;x1, x2, x3, x4)〉 = 0 ⇔ (73)

〈 δ

δα(x)
Ğ(x0;x1, x2, x3, x4)〉 = 〈Ğ(x0;x1, x2, x3, x4)

δS

δα(x)
〉

where all points x0, x1, x2, x3 and x4 are kept separate.
The variation of the operator Ğ receives a contribution
〈G〉 from the variation of Q̆ and a contribution from the
variation of the fermion field ψ1. Integrating over x yields

〈G〉 + 〈G5〉 = −
∫

d4x〈Ğ [∇µ
xAµ(x)

−2m0P (x) −X5(x)]〉 (74)

In the chiral limit, the term 2m0P (x) on the r.h.s. van-
ishes, whereas the integrated total divergence of the ax-
ial current gives a nonzero surface term, due to the pres-
ence of Goldstone bosons. If we are not in the chiral limit,
the 2m0P (x) term is present, but the surface term from
the current divergence vanishes upon integration. We will
be considering the latter case, in order to mimic what is
happening in the simulations (i.e., first we compute at
small nonzero quark mass and then extrapolate to the
chiral limit). The operator X5 arises from the variation
of the chiral symmetry-breaking Wilson term in the ac-
tion. As shown in [11] (see also [17] for a detailed dis-
cussion), it mixes, under renormalization with ∇µAµ and
P . This mixing, determined by the requirement that on-
shell matrix elements of the subtracted X5 vanish in the
continuum, generates a finite renormalization of the axial
current and a power subtraction of the quark mass. Thus,
following [11], in the above WI we will trade off X5 for the
renormalized expression [∇µÂµ − 2m̂P̂ −X5], where X5
is the subtracted X5. What is of interest to us is that, be-
sides the above renormalizations, the X5 insertion in the
above correlation function also generates contact terms.
They are found by looking at the flavour content and dis-
crete symmetries of the specific correlation function. We
find (up to Schwinger terms, which vanish under the inte-
gral):

〈X5(x)Ğk(x0;x1, x2, x3, x4)〉 (75)
= 〈Gj〉 (δjk −Rjk) δ(x− x0) − 〈Gj〉∆ijRikδ(x− x0)

where repeated indices are summed; i, j = 1, · · · , 5. The
notation for the various coefficients has been chosen with
some foresight: The 5 × 5 matrix Rjk is a block diagonal
matrix of the form of Zχ of (22). It will eventually turn
out that R = ZT

χ (Z−1)T; i.e., R is the finite ratio of the
parity-conserving to the parity-violating, logarithmically
diverging, renormalization matrices of χRS type. The 5×5
matrix ∆ij is a sparse matrix of the form of (23); it will
eventually turn out to be the matrix defined in (23). Fi-
nally, note that the product [∆TR]jk is a sparse matrix
of the form of ∆. In conclusion, we have separated the
contact terms on the r.h.s. of (76) into a first term which
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mixes the 〈Gj〉 as in the χRS scheme, and a second term,
which generates lattice mixing. Note that in the above
expression, we have included only the contact terms gen-
erated by the proximity of X5(x) to the operators Q(x0).
In principle, there are also contact terms arising from the
proximity of X5(x) to the quark fields of the correlation
G at points x1, · · · , x4. However, as shown in [42], these
terms vanish in the continuum limit. The reason is that
the insertion of the operator X5 with fundamental fields
(once both this operator and the quark fields are renor-
malized) is proportional to the lattice spacing.

We now combine (74) and (76), Fourier-transform the
WI (with all external momenta set equal to p) and am-
putate the resulting correlation functions. We denote by
Λ(p) and J\5(p) the momentum-space amputated Green’s
functions of 〈G〉 and 〈G5〉. The Fourier-transformed Ğ is
denoted by Ğ(p). The resulting momentum-space ampu-
tated WI is

Λ(p)
[
I +∆T

]
R = −J\5(p) + 2m̂

∫
d4x〈Ğ(p)P̂ (x)〉

×
4∏
1

〈S−1(p)〉 (76)

We require that the above WI, up to quark-field renor-
malization, be the one valid in the continuum limit for
renormalized correlation functions (operators), and that
it be identical to the corresponding nominal WI (which
is just the tree-level version of the above equation). This
implies that ∆ is indeed the matrix of lattice subtractions.
Moreover, R can indeed be identified with the ratio of the
renormalization matrices ZTχ (Z−1)T , since this combina-
tion would renormalize both sides of the above equation
(NB: the renormalization of Ğ(p) is identical to that of
G(p), since the two operators only differ by a relabeling of
ψ5 as ψ1).

We now show how the WI fixes both the lattice mix-
ing matrix ∆ and the matrix ratio R. We consider the first
column of the above WI; its l.h.s. concerns the operator
Q1 and its lattice mixings. By projecting this WI with
five projectors of (37) and (38), we construct a linear in-
homogenous system of five equations w.r.t. the quantities
R11 and [∆TR]k1 = R11∆1k, with k = 2, · · · , 5. By solving
this system, the lattice mixing of Q1 and the ratio of the
multiplicative renormalization constants R11 = Z11/Z11

of Q1 and Q̆1 (which is just Q1 with a flavour relabeling)
can be determined. Similarly, a system of ten equations
(using ten projectors on the second and third columns of
the WI) determines the lattice mixing of Q2 and Q3 (i.e.,
the ∆jk with j = 2, 3 and k = 1, 4, 5) and the elements
Rik with i, k = 2, 3. The case of Q4 and Q5 is identical to
that of Q2 and Q3 (but involves the fourth and fifth rows
of the WI).

So far, we have shown how WI can determine the
lattice-mixing coefficients and the finite ratio of the χRS
renormalization matrices. We will now show that these
quantities are compatible to the ones obtained from the RI
renormalization conditions in the large-momentum limit.
We project both sides of (76) with the 5×1 column vector

IP, defined as

IP = (−IP1, IP2, IP3, IP4, IP5)T (77)

(the minus sign in IP1 corresponds to that of −G1 in (72).
For large p, the last term on the r.h.s. vanishes. This is
because the explicit m0 factor implies that the integrated
term has one less dimension than the others, so that at
large momenta, it vanishes faster by one power of p (see
[42]). Moreover, in this limit, the inverse-quark propaga-
tor behaves as S−1(p) = iΣ1γµpµ (with Σ1 a scalar form
factor and up to O(a) terms). This means that in this
limit it anticommutes with γ5. Combining this result with
the definition of IPk, we easily deduce that

Tr IPkJ\5
j = −Tr 1℘kJ\j (78)

(with k, j = 1, · · · , 5). Thus, the WI becomes

Tr IPΛ
[
I +∆T]

ZT
χ = Tr 1℘J\ZT. (79)

This WI, given the RI renormalization condition for the
parity-violating operator

Tr 1℘J\ZT = I (80)

implies the RI renormalization condition of (56) for the
parity-conserving operators Q.

We now comment briefly on the relation of these re-
sults to the more realistic case of three light flavours. The
physical operators O− always mix with others of lower
dimension. This introduces further complications, which
are beyond the scope of the present work. For the phys-
ical operators O+, there are penguin-type contributions;
however, these cancel. Thus, the resulting WI are identical
to the ones obtained here with five flavours.

5.2 Scale dependence of the renormalization constants

We will now specify which of these renormalization con-
stants are divergent quantities in the UV limit and which
are finite. First we give a general discussion of the func-
tional dependence of the Z (and Z) on the coupling, mass,
renormalization point, and cutoff. We are interested in
the physics of light-quark masses, so we assume µ � m.
The Z are dimensionless quantities; thus, in principle, they
could have the functional dependence Z(g2

0 , aµ, am,m/µ),
wherem stands for the degenerate quark mass and µ is the
renormalization scale (i.e., it stands for a generic choice of
the four external quark momenta). It must be chosen so
as to regularize all IR divergences, including those arising
in the chiral limit. For the four-fermion operators we are
considering in this work, it suffices to simply take equal
momenta; i.e., p2

i = µ2 (i = 1, . . . , 4 for the four exter-
nal legs; µ is spacelike.). Any regular dependence on am
and aµ should drop out in the continuum limit a → 0,
and is therefore treated in simulations as a systematic er-
ror due to the finiteness of the cutoff. These errors are,
say, O(am), O(aµ) for the Wilson action and O(amg2

0),
O(aµg2

0) for the tree-level improved Clover action, used
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in the present paper. Moreover, the Z cannot be singu-
lar in am (e.g., they have ln(am) terms in the small mass
limit m � µ) because they would diverge not only in the
continuum limit, but also in the chiral limit (m → 0). Sim-
ilarly, regular terms in m/µ are neglected (light masses),
whereas singular ones must be absent (existence of chiral
limit). In conclusion, for light-quark masses, the functional
dependence of the Z is in general of the form Z(g2

0 , aµ).
Power counting suggests that the dependence of Z on

aµ is singular (logarithmic). However, this is true only of
the χRS renormalization constants Zχ and Z. The lattice-
mixing coefficients ∆ and the “ratio” Z−1Zχ can be de-
termined from a system of equations (the projected WI
discussed above). This implies that they can be expressed
in terms of bare lattice correlation functions, which do not
depend on the renormalization scale. Thus their functional
dependence is of the form Z(g2

0); i.e., they are finite.
Finally, we can lift the mass degeneracy, introducing

small mass differences δm. This could, in principle, in-
troduce dependences like powers of aδm and ln(mi/mj)
in the Z. However, as pointed out in [41], none of these
survive: The regular terms (e.g., powers of aδm) vanish
in the continuum limit a → 0, i.e., they are part of the
usual O(am) and O(g2

0am) discretization errors. Singu-
lar (power or logarithmic) dependence is not allowed, be-
cause of the requirement that the chiral limit of the theory
(mi → 0) exist and that it be well defined. Thus, lifting
the mass degeneracy does not spoil the renormalization
pattern discussed above.

5.3 Identities between renormalization constants

In this section, we derive useful identities which relate
some parity-conserving renormalization constants of S =
1 operators to renormalization constants of their S = −1
counterparts. These identities are formally exact, but are
only approximately satisfied in practical computations.
Thus, they are useful tests of the reliability of our results.

In order to derive them, we first need to show that,
once the operator basis has been renormalized using the RI
scheme, any other basis of renormalized operators (formed
by linear combinations of the original renormalized opera-
tors) also satisfies the RI conditions. This is very straight-
forward. In the first basis, the RI scheme consists in the
following properties of the projected amputated Green’s
functions Λ:

Tr IPΛ(0) = I,

Λ̂ ≡ ZΛ, (81)

Tr IPΛ̂ = Tr IP(ZΛ) = I.

The above are valid at the renormalization scale p2 = µ2.
This shorthand notation should be clear to the reader.
Now we can define a new basis of operators, obtained by
a rotation R of the original basis. This implies rotated pro-
jected amputated Green’s functions Λ′ and rotated pro-
jectors IP′, which must satisfy:

Λ′ ≡ RΛ,

Tr IP′Λ(0)′
= I. (82)

Trivially, the last equation is satisfied, provided that

IP′ = IPR−1 (83)

It is straightforward to combine (81)–(83) to show that Λ̂′

also satisfies the RI renormalization condition Tr IP′Λ̂′ =
I. The implication of this property is that if we use the RI
scheme in order to renormalize separately the operators,
O[V V+AA] and OF[V V+AA] for example, then the renor-

malized operator Q̂[V V+AA] + Q̂F[V V+AA] satisfies the RI
scheme; in other words, it is the renormalized operator
Q̂+

1 . In this section, we will make use of this property. We
also note that in this section, we will exclusively work with
the lattice-subtracted parity-conserving operators Q̃k, and
the parity-violating operators Qk. As discussed in
Sects. 3.4 and 5.1, these operators have good chiral prop-
erties (in other words, they can be thought of as operators
in the χRS).

We consider the operator O[V A−AV ], which only mixes
with the operator OF[SP−PS]. Thus, we renormalize it in
the RI scheme to obtain

Ô[V A−AV ] = z22O[V A−AV ] − z23O
F
[SP−PS]. (84)

The same renormalization pattern is obeyed by operator
OF[V A−AV ] (it only mixes with O[SP−PS]) since it involves
only a relabeling of flavours:

ÔF[V A−AV ] = z22O
F
[V A−AV ] − z23O[SP−PS]. (85)

The last two equations can be combined into

Q̂±
2 = Ô[V A−AV ] ± ÔF[V A−AV ] = z22Q±

2 ± z23Q±
3 , (86)

which implies that

Z+
22 = Z−

22 = z22,

Z+
23 = −Z−

23 = z23. (87)

Similar expressions can be derived for the renormaliza-
tion constants of operators Q±

3 and the parity-conserving
ones in the χRS scheme. In practical simulations, we ex-
pect that these identities are well satisfied in the parity-
violating case. For the parity-conserving one (which also
involves lattice subtractions) the agreement should only
be approximate.

We note that the above proof rests on two crucial
properties of the operators O[V A−AV ] and OF[SP−PS]: (i)
they mix with each other only; (ii) they transform into
each other under Fierz transformations in Dirac space
(cf. (96)). These two properties determine the mixing pat-
tern of (84) and (85). This proof cannot be extended to op-
erators Q±

4 and Q±
5 . The second requirement is satisfied by

the pair of operators O[SP+PS] and OF[SP+PS] −OF
[T T̃ ]

; see
(96). However, the first requirement is not satisfied, since
operator O[SP+PS] mixes not only with OF[SP+PS]−OF[T T̃ ]

,
but also with O[SP+PS] − O[T T̃ ] (cf. Table 1). Thus, no
property analogous to (87) can be found for the operators
Q±

4 and Q±
5 (or a linear combination of them).
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Table 3. Parameters of the runs used for the NP calculation of the renormalization
constants. We also give the critical value of the hopping parameter κc and the inverse
lattice spacing a−1, as quoted in [43]

β 6.0 6.0 6.2 6.2 6.4 6.4
Action C W C W C W
# Confs 100 100 180 100 60 60
Volume 163 × 32 163 × 32 163 × 32 163 × 32 243 × 32 243 × 32
κ 0.1425 0.1530 0.14144 0.1510 0.1400 0.1488

0.1432 0.1540 0.14184 0.1515 0.1403 0.1492
0.1440 0.1550 0.14224 0.1520 0.1406 0.1496

0.14264 0.1526 0.1409 0.1500
κc 0.14551 0.15683 0.14319 0.15337 0.14143 0.15058
a−1 2.16(4) 2.26(5) 2.70(10) 3.00(9) 4.00(20) 4.10(20)

6 Numerical results

In order to test the feasibility of these ideas, we have com-
puted the renormalization constants, in the RI scheme,
of the complete basis of operators Qk and Qk, for k =
1, · · · , 5. This was done in the quenched approximation
for the Wilson and tree-level improved Clover actions. We
have performed simulations at three values of the gauge
coupling, namely β = 6/g2

0 = 6.0, 6.2, 6.4. Our results
were obtained at finite quark masses and extrapolated to
the chiral limit κc. The specific values of all lattice param-
eters used in these simulations can be found in Table 3.
We also give in the table the value of the inverse lattice
spacing a−1, obtained in [43] on the same data set. All
statistical errors have been estimated with the jacknife
method, decimating ten configurations at a time.

As has been explained in Sect. 4, the NP method is
based on the computation of quark Green’s functions; thus
gauge-fixing has to be implemented. We have worked in
the lattice Landau gauge, defined by minimizing the func-
tional

Tr

[
4∑

µ=1

(
Uµ(x) + U†

µ(x)
)]
. (88)

Possible effects from Gribov copies have been ignored.
However, in analogy to the study of the effect of Gribov
ambiguities on the renormalization of two-quark operators
of [15], we expect them to be small.

We now present detailed results for one representa-
tive case, namely the renormalization constants of the
Clover action at β = 6.2, as a function of the renor-
malization scale in lattice units. All results are extrap-
olated in the chiral limit. In Fig. 1, we plot the renor-
malization constants of operators Q+

1 and Q+
1 . We see

that both χRS renormalization constants Z+
11 and Z+

11
are scale-dependent, whereas the mixing coefficients ∆1k
(k = 2, . . . 5) become more stable with increasing µ. This
is what we expect from the discussion of Sect. 5. In Figs. 2
and 3, we show similar results for the renormalization
constants of the operators Q+

k and Q+
k , for k = 2, 3,

whereas in Figs. 4 and 5, we show those for k = 4, 5. Most
χRS renormalization constants of the matrix Z+

χ display

Fig. 1a,b. Renormalization constants (at β = 6.2; Clover ac-
tion) in the chiral limit as a function of the renormalization
scale: a Z+

11 (�) and Z+
11 (2); b ∆+

1i, i = 2, . . . , 5

a marked µ dependence due to a nonzero anomalous di-
mension, whereas the lattice subtraction coefficients of the
matrix ∆+ are roughly scale-independent in the window
aµ ∈ [1, 2]. Compared to the others, the renormalization
constants∆+

24,∆
+
34, and∆+

43 have a more pronounced vari-
ation with the scale µ; nevertheless, they are reasonably
flat in the same window.

In order to give a more quantitative flair of our results,
we present the renormalization matrices, for all actions
and couplings, in Appendix C. Only results at the renor-
malization scale µ ' 2 GeV are presented. Note that the
identities derived in Sect. 5.3 for the χRS renormalization
constants of operators Q±

2 and Q±
3 (cf. (87)) are well sat-

isfied. For the parity-conserving operators Q±
2 and Q±

3 ,
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Fig. 2a–d. Renormalization constants (at β = 6.2; Clover
action) in the chiral limit as a function of the renormalization
scale: a Z+

22 (�) and Z+
22 (2); b Z+

23 (�) and Z+
23 (2); c Z+

32 (�)
and Z+

32 (2); d Z+
33 (�) and Z+

33 (2)

Fig. 3a,b. Renormalization constants (at β = 6.2; Clover ac-
tion) in the chiral limit as a function of the renormalization
scale: a ∆+

2i, i = 1, 4, 5; b ∆+
3i, i = 1, 4, 5

Fig. 4a–d. Renormalization constants (at β = 6.2; Clover
action) in the chiral limit as a function of the renormalization
scale: a Z+

44 (�) and Z+
44 (2); b Z+

45 (�) and Z+
45 (2); c Z+

54 (�)
and Z+

54 (2); d Z+
55 (�) and Z+

55 (2)

Fig. 5a,b. Renormalization constants (at β = 6.2; Clover ac-
tion) in the chiral limit as a function of the renormalization
scale: a ∆+

4i, i = 1, 2, 3; b ∆+
5i, i = 1, 2, 3
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similar identities appear to be approximately true. At the
scale µ ' 2GeV, these results can be directly used in the
computation of the matrix elements of the corresponding
operators. A first implementation of these results in the
calculation of various B parameters can be found in [29,
30].

The validity of our results should be confirmed inde-
pendently from WI, computed with the same actions and
at the same couplings. Work in this direction is in progress.
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A Notation and conventions

The 16 Euclidean Dirac 4×4 matrices, which form a com-
plete basis, are denoted by

Γ = {1I, γµ, σµν , γµγ5, γ5} ≡ {S, V, T,A, P}, (89)

where

γ5 ≡ − 1
4!
εµνρλγµγνγργλ = −γ0γ1γ2γ3

σµν =
1
2
[γµ, γν ] (90)

and εµνρλ is the completely antisymmetric rank-four pseu-
dotensor with ε0123 = +1. The Euclidean Dirac matrices
satisfy the following properties

{γµ, γν} = 2δµν , γ†
µ = γµ, γ†

5 = γ5. (91)

We also define the dual “sigma” matrix:

σ̃µν ≡ 1
2
εµνρλσρλ = γ5σµν ≡ T̃ . (92)

The helicity projectors are, as usual,

γL
µ ≡ Lµ ≡ γµ(1 − γ5), γR

µ ≡ Rµ ≡ γµ(1 + γ5),

and
L ≡ (1 − γ5), R ≡ (1 + γ5).

By repeated Γ matrices, we imply summation of their
Lorentz indices (if any); for example V V ≡ ∑

µ γµ ⊗ γµ,
V A ≡ ∑

µ γµ ⊗ γµγ5, etc. Note, however, that TT =
σµν ⊗ σµν and T T̃ = σµν ⊗ σ̃µν means summation over
the six independent σµν matrices (e.g., summation over µ
and ν with µ > ν).

The colour group is SU(Nc) with Nc = 3. The Gell-
Mann group generators are denoted by ta, a = 1, . . . , N2

c −
1. Fermion fields ψAα carry spinor and colour indices.
Latin uppercase letters denote colour indices in the fun-
damental representation (A,B, . . . = 1, . . . , Nc), whereas
Greek lowercase letters stand for Dirac spinor indices

(α, β, . . . , ρ, σ, . . . = 1, . . . , 4). The letters m and n are
reserved for Lorentz indices running over the set of Dirac
matrices (as in Γ (1)mΓ (2)m) according to the following
convention: if we are dealing with pairs of Dirac matrices
such as SS, SP , etc., the index m is absent. If we have
pairs like V V , V A etc, m runs over the four values of γµ.
In the case of the pairs TT and T T̃ , m runs over the six
independent values of the Dirac matrices σµν and σ̃µν .

B Fierz transformations in Dirac space

In this appendix, we gather several useful formulas con-
cerning Fierz transformations in Dirac space; colour in-
dices are ignored. We express the Fierz transformation of
the Dirac indices of a four-fermion operator as follows:

Γ ⊗ Γ ≡ Γαβ ⊗ Γγδ → [Γ ⊗ Γ ]FD ≡ Γαδ ⊗ Γγβ (93)

The Euclidean Fierz-transformed Dirac tensor products
[Γ ⊗ Γ ]FD can be reexpressed as a linear combination of
the complete set of the original tensor products Γ ⊗Γ , by
exploiting the completeness of the set of Dirac matrices.
One has


[
S ⊗ S̃

]FD

[
V ⊗ Ṽ

]FD

[
T ⊗ T̃

]FD

[
A ⊗ Ã

]FD

[
P ⊗ P̃

]FD




= −1
4




1 1 −1 −1 1
4 −2 0 −2 −4

−6 0 −2 0 −6
−4 −2 0 −2 4

1 −1 −1 1 1







S ⊗ S

V ⊗ V

T ⊗ T

A ⊗ A

P ⊗ P

.




(94)
The overall minus sign is due to the anticommutativity of
the Fermi fields. Our Dirac Γ matrices are normalized as

SS = 1, V V = 4, TT = −6, AA = −4, PP = 1, (95)

with the summation over Dirac indices understood. Recall
that the sum in TT runs only over the six independent σµν
matrices10.

From the above equation, we can easily derive the fol-
lowing useful identities concerning parity-conserving op-
erators:

[V ⊗ V + A ⊗ A]FD = V ⊗ V + A ⊗ A,

[V ⊗ V − A ⊗ A]FD = −2 [S ⊗ S − P ⊗ S] ,

[S ⊗ S − P ⊗ P ]FD = −1
2

[V ⊗ V − A ⊗ A] ,

[S ⊗ S + P ⊗ P ]FD = −1
2

[S ⊗ S + P ⊗ P

−T ⊗ T ] ,
[S ⊗ S + P ⊗ P − T ⊗ T ]FD = −2 [S ⊗ S + P ⊗ P ] .

(96)
10 Sometimes T and A are defined with an imaginary i prefac-
tor in order to have a positive normalization. This would imply
a change of sign in the T and A rows and columns of the F
matrix. This convention is not adopted here.
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Moreover, by substituting ψ4 → γ5ψ4 in the above equa-
tions, we derive, for the parity-violating operators Q±

1 ,
Q±

2 , and Q±
3 of our basis:

[V ⊗ A + A ⊗ V ]FD = V ⊗ A + A ⊗ V ,

[V ⊗ A − A ⊗ V ]FD = −2 [S ⊗ P − P ⊗ S] ,

[S ⊗ P − P ⊗ S]FD = −1
2

[V ⊗ A − A ⊗ V ] ,

[S ⊗ P + P ⊗ S]FD = −1
2

[S ⊗ P + P ⊗ S

−T ⊗ T̃
]
,[

S ⊗ P + P ⊗ S − T ⊗ T̃
]FD

= −2 [S ⊗ S + P ⊗ P ] ,
(97)

Finally, from (94) we can easily derive the five lin-
ear combinations of operators which are eigenstates of the
transformation with eigenvalues ±1; they are:

[S ⊗ S + P ⊗ P + T ⊗ T ]FD

= + [S ⊗ S + P ⊗ P + T ⊗ T ] , (98)

[V ⊗ V + A ⊗ A]FD

= + [V ⊗ V + A ⊗ A] ,

[2(S ⊗ S − P ⊗ P ) − (V ⊗ V − A ⊗ A)]FD

= + [2(S ⊗ S − P ⊗ P ) − (V ⊗ V − A ⊗ A)] ,

[2(S ⊗ S − P ⊗ P ) + (V ⊗ V − A ⊗ A)]FD

= − [2(S ⊗ S − P ⊗ P ) + (V ⊗ V − A ⊗ A)] ,[
S ⊗ S + P ⊗ P − 1

3
T ⊗ T

]FD

= −
[
S ⊗ S + P ⊗ P − 1

3
T ⊗ T

]
,

Thus, in Dirac space, three linear combinations are Fierz
eigenstates with eigenvalue +1 and two are Fierz eigen-
states with eigenvalue −1.

C Numerical results

In this appendix, we present the renormalization matri-
ces for both the Wilson and Clover actions at the three
couplings considered. All results are in the chiral limit.
For each β value, we show results at a scale aµ (in lattice
units) such that µ ' 2GeV.

C.1 Clover action, β = 6.0, µ2a2 = 0.964

Z− =




0.90(4) 0 0 0 0
0 0.97(3) −0.45(1) 0 0
0 −0.017(3) 0.36(1) 0 0
0 0 0 0.27(1) −0.024(6)
0 0 0 0.23(1) 1.12(4)




Z−
χ =




0.92(4) 0 0 0 0
0 0.99(3) −0.42(1) 0 0
0 −0.019(4) 0.47(1) 0 0
0 0 0 0.36(2) −0.024(6)
0 0 0 0.19(1) 1.11(4)




∆− =




0 −0.15(1) −0.02(1) −0.15(2) −0.09(1)
−0.23(1) 0 0 0.38(2) 0.06(1)

−0.059(5) 0 0 0.53(1) −0.019(8)
−0.06(1) −0.02(1) 0.79(2) 0 0

−0.053(8) 0.048(6) −0.300(9) 0 0




Z+ =




0.87(2) 0 0 0 0
0 0.96(3) 0.45(1) 0 0
0 0.016(3) 0.35(1) 0 0
0 0 0 0.44(1) −0.009(3)
0 0 0 −0.44(2) 1.20(3)




Z+
χ =




0.88(2) 0 0 0 0
0 0.97(3) 0.38(1) 0 0
0 0.010(3) 0.41(1) 0 0
0 0 0 0.52(2) −0.009(4)
0 0 0 −0.41(2) 1.20(4)




∆+ =




0 −0.27(1) −0.022(7) 0.14(1) 0.034(8)
−0.203(9) 0 0 −0.49(2) 0.02(1)

0.041(2) 0 0 0.70(2) 0.001(7)
0.029(2) −0.010(4) 0.46(1) 0 0
0.037(5) 0.012(5) 0.273(9) 0 0




C.2 Wilson action, β = 6.0, µ2a2 = 0.964

Z− =




0.651(7) 0 0 0 0
0 0.611(9) −0.262(5) 0 0
0 −0.018(1) 0.316(7) 0 0
0 0 0 0.271(8) 0.007(2)
0 0 0 0.178(4) 0.721(9)




Z−
χ =




0.655(8) 0 0 0 0
0 0.620(9) −0.253(4) 0 0
0 −0.021(2) 0.35(1) 0 0
0 0 0 0.294(9) 0.008(2)
0 0 0 0.166(5) 0.72(1)




∆− =




0 −0.092(3) 0.014(6) −0.058(7) −0.040(7)
−0.152(8) 0 0 0.259(9) 0.022(6)
−0.034(4) 0 0 0.36(1) 0.011(4)
−0.021(4) −0.023(3) 0.50(1) 0 0
−0.024(3) 0.017(3) −0.194(6) 0 0




Z+ =




0.532(7) 0 0 0 0
0 0.611(8) 0.262(5) 0 0
0 0.018(1) 0.316(8) 0 0
0 0 0 0.363(7) −0.015(2)
0 0 0 −0.239(5) 0.678(9)
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Z+
χ =




0.538(8) 0 0 0 0
0 0.610(9) 0.241(6) 0 0
0 0.017(1) 0.330(8) 0 0
0 0 0 0.388(8) −0.016(2)
0 0 0 −0.227(5) 0.678(9)




∆+ =




0 −0.176(8) −0.031(5) 0.054(6) 0.007(4)
−0.122(6) 0 0 −0.30(1) 0.011(4)

0.025(1) 0 0 0.44(1) −0.013(2)
0.011(1) 0.009(2) 0.308(9) 0 0
0.013(2) 0.010(2) 0.186(5) 0 0




C.3 Clover action, β = 6.2, µ2a2 = 0.617

Z− =




0.97(2) 0 0 0 0
0 1.04(2) −0.51(1) 0 0
0 −0.016(2) 0.337(9) 0 0
0 0 0 0.28(1) −0.029(8)
0 0 0 0.27(1) 1.21(3)




Z−
χ =




0.98(3) 0 0 0 0
0 1.07(2) −0.49(2) 0 0
0 −0.025(3) 0.48(2) 0 0
0 0 0 0.32(1) −0.017(6)
0 0 0 0.21(1) 1.24(3)




∆− =




0 −0.14(1) −0.03(2) −0.16(1) −0.11(1)
−0.20(1) 0 0 0.37(2) 0.060(9)

−0.054(9) 0 0 0.52(3) −0.008(9)
−0.060(8) −0.02(1) 0.77(3) 0 0
−0.072(4) 0.042(5) −0.294(9) 0 0




Z+ =




0.94(2) 0 0 0 0
0 1.04(2) 0.51(1) 0 0
0 0.017(2) 0.338(9) 0 0
0 0 0 0.44(1) −0.012(3)
0 0 0 −0.52(1) 1.36(2)




Z+
χ =




0.96(2) 0 0 0 0
0 1.03(2) 0.41(1) 0 0
0 0.007(3) 0.41(2) 0 0
0 0 0 0.54(2) −0.007(4)
0 0 0 −0.47(1) 1.35(2)




∆+ =




0 −0.25(1) −0.01(1) 0.12(1) 0.040(9)
−0.200(9) 0 0 −0.50(2) −0.004(6)

0.045(2) 0 0 0.70(3) −0.005(6)
0.033(2) −0.011(5) 0.45(2) 0 0
0.044(5) 0.003(5) 0.27(1) 0 0




C.4 Wilson action, β = 6.2, µ2a2 = 0.617

Z− =




0.72(2) 0 0 0 0
0 0.68(1) −0.31(1) 0 0
0 −0.017(1) 0.313(7) 0 0
0 0 0 0.286(8) 0.001(3)
0 0 0 0.21(1) 0.82(2)




Z−
χ =




0.72(2) 0 0 0 0
0 0.69(1) −0.29(1) 0 0
0 −0.021(2) 0.376(8) 0 0
0 0 0 0.291(9) 0.002(3)
0 0 0 0.17(1) 0.82(2)




∆− =




0 −0.088(6) 0.009(5) −0.063(7) −0.051(5)
−0.13(1) 0 0 0.27(2) 0.028(6)

−0.027(6) 0 0 0.40(2) 0.004(9)
−0.023(4) −0.019(4) 0.55(4) 0 0
−0.033(5) 0.022(3) −0.21(1) 0 0




Z+ =




0.60(1) 0 0 0 0
0 0.68(1) 0.31(1) 0 0
0 0.017(2) 0.312(7) 0 0
0 0 0 0.366(7) −0.013(2)
0 0 0 −0.287(9) 0.78(1)




Z+
χ =




0.60(1) 0 0 0 0
0 0.68(1) 0.27(1) 0 0
0 0.015(3) 0.343(6) 0 0
0 0 0 0.411(7) −0.014(2)
0 0 0 −0.27(1) 0.78(1)




∆+ =




0 −0.155(9) −0.012(5) 0.050(6) 0.024(5)
−0.118(7) 0 0 −0.33(2) 0.006(6)

0.026(3) 0 0 0.49(3) −0.011(5)
0.015(2) 0.004(5) 0.33(2) 0 0
0.019(3) 0.004(4) 0.190(9) 0 0




C.5 Clover action, β = 6.4, µ2a2 = 0.313

Z− =




0.86(2) 0 0 0 0
0 1.00(2) −0.50(2) 0 0
0 −0.014(4) 0.308(9) 0 0
0 0 0 0.229(9) −0.035(6)
0 0 0 0.23(1) 1.16(4)




Z−
χ =




0.87(2) 0 0 0 0
0 1.04(2) −0.51(2) 0 0
0 −0.024(5) 0.39(1) 0 0
0 0 0 0.27(1) −0.042(7)
0 0 0 0.19(1) 1.17(4)
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∆− =




0 −0.116(9) −0.02(2) −0.13(2) −0.11(2)
−0.17(1) 0 0 0.31(1) 0.02(3)

−0.044(7) 0 0 0.45(2) −0.04(2)
−0.05(1) −0.04(1) 0.71(4) 0 0
−0.08(1) 0.029(8) −0.24(1) 0 0




Z+ =




0.92(1) 0 0 0 0
0 1.00(2) 0.50(2) 0 0
0 0.015(2) 0.31(1) 0 0
0 0 0 0.406(9) −0.005(4)
0 0 0 −0.54(2) 1.37(4)




Z+
χ =




0.93(1) 0 0 0 0
0 1.00(2) 0.42(2) 0 0
0 0.005(4) 0.34(1) 0 0
0 0 0 0.47(1) −0.005(5)
0 0 0 −0.51(2) 1.37(4)




∆+ =




0 −0.21(2) −0.01(1) 0.12(2) 0.04(1)
−0.18(1) 0 0 −0.43(3) 0.002(19)
0.040(8) 0 0 0.63(4) 0.002(11)
0.027(7) −0.012(4) 0.39(2) 0 0
0.038(9) 0.008(8) 0.23(1) 0 0




C.6 Wilson action, β = 6.4, µ2a2 = 0.313

Z− =




0.68(1) 0 0 0 0
0 0.687(9) −0.322(9) 0 0
0 −0.014(2) 0.275(5) 0 0
0 0 0 0.226(7) −0.009(3)
0 0 0 0.192(9) 0.82(3)




Z−
χ =




0.68(1) 0 0 0 0
0 0.697(8) −0.32(1) 0 0
0 −0.018(3) 0.317(9) 0 0
0 0 0 0.242(7) −0.010(4)
0 0 0 0.176(9) 0.81(3)




∆− =




0 −0.084(4) 0.012(9) −0.06(1) −0.04(1)
−0.123(6) 0 0 0.251(8) 0.02(1)
−0.034(3) 0 0 0.36(1) −0.007(9)
−0.033(5) −0.025(7) 0.54(3) 0 0
−0.025(8) 0.014(5) −0.182(8) 0 0




Z+ =




0.595(7) 0 0 0 0
0 0.686(9) 0.321(8) 0 0
0 0.014(2) 0.275(6) 0 0
0 0 0 0.335(5) −0.011(2)
0 0 0 −0.31(1) 0.81(2)




Z+
χ =




0.600(7) 0 0 0 0
0 0.683(9) 0.299(9) 0 0
0 0.011(2) 0.290(7) 0 0
0 0 0 0.363(7) −0.012(2)
0 0 0 −0.30(1) 0.81(2)




∆+ =




0 −0.142(9) −0.012(5) 0.061(7) 0.015(6)
−0.111(5) 0 0 −0.30(2) 0.003(10)

0.029(4) 0 0 0.46(2) −0.007(6)
0.015(2) 0.002(3) 0.30(1) 0 0
0.019(4) 0.005(5) 0.172(8) 0 0
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478, 365 (1996); M. Lüscher, S. Sint, R. Sommer, H. Wit-
tig, Nucl. Phys. B 491, 344 (1997)

20. G. Martinelli, et al., Nucl. Phys. B 445, 81 (1995)
21. A. Donini, et al., Phys. Lett. B 360, 83 (1996)
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